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Properties of Periodic Arrays of Symmetric
Complementary Structures and Their

Application to Grid Amplifiers
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Abstract—Deschamps’ theorem forn-terminal complementary
structures is reviewed. An extension to Deschamps’ theorem for
a class of three-terminal bounded structures with one axis of
symmetry is presented. It is shown that, for these structures, a
simple relationship between the impedances of the odd mode of
the original structure and the admittances of the even mode of
the complementary structure exists, and that these modes are
orthogonal. Using this, a self-complementary grid amplifier is
designed and the measured results are presented.

Index Terms— Grid amplifiers, quasi-optics, self-comple-
mentary.

I. MOTIVATION

QUASI-OPTICAL grid amplifiers using differential-pair
transistors have been used to combine the output power
of many solid-state devices in free space, eliminating the

losses associated with waveguide or transmission-line combin-
ers [1], [2]. To the first order, the unit cell of a grid determines
the driving-point impedance seen by each device, while power
scales with the grid area. This allows the reduction of the
problem of the entire grid to that of a single unit cell. The
symmetry of some grids allows boundary conditions to be
imposed on a unit cell, thus reducing the problem of solving
for the cell to that of solving for a waveguide representing
the cell [3]. Previous grid-array amplifiers have used crossed-
dipole antennas for input and output. The current distributions
on these dipole antennas do not permit a simple solution for
fields in the equivalent waveguide. Consequently, previous
grid amplifiers have been modeled using an approximate
transmission-line equivalent-circuit model [2]. The crossed-
dipole construction has the additional drawback that it requires
the use of differential pairs of transistors which must be
specially fabricated for the application.

A unit-cell configuration that can be more readily modeled
would be desirable, as would a configuration that utilizes a
single transistor per unit cell while maintaining cross-polarized
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Fig. 1. An n-terminal structure.

input and output. Periodic arrays of self-complementary sym-
metrical structures offer such an alternative configuration.

II. DESCHAMPS’ THEOREM

Using Babinet’s principle, Booker presented a simple re-
lationship between the impedances of two one-port planar
complementary structures [4]. In 1959, Deschamps presented
the impedance properties of multiterminal complementary
planar structures [5], a generalization to Booker’s equation.
Fig. 1 shows an -terminal structure. Assume that a source
inside is connected to some or all of the terminals. The
sphere is small compared to the wavelength of operation.
Assume that is a field solution for this structure.
In other words, is a field produced about this structure by
some configuration of sources inside.

Now consider the complement of the structure in Fig. 1,
obtained by replacing the metal parts of the original structure
with free space and the apertures with metal. Deschamps
showed that an acceptable solution for this structure is the
dual of . is defined to be the dual field

(1)

where is the characteristic impedance of free
space.

To show that is a solution to the complement of the struc-
ture, first consider the uniqueness theorem. For linear isotropic
media, specification of the boundary conditions is sufficient to
specify fields uniquely within the region. Therefore, two prob-
lems with the same boundary conditions will have identical
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(a)

(b)

Fig. 2. (a) Electric and magnetic fields for an arbitrary structure. (b) The
electromagnetic fields for the complement of the structure in (a). The fields
in (b) are the duals of the fields in (a).

solutions. Consider the structure of Fig. 2(a) with the assumed
field solution . Continuity of the tangential electric field at
a boundary requires that the surface tangential electric field
be zero just outside the metal surface. Therefore, the-fields
at the plane of the structure approach the metal normal to its
boundary and, just above the structure, the-fields are normal
to the plane of the structure. The discontinuity in tangential
magnetic field requires that the tangential magnetic field be
perpendicular to the direction of the surface current and equal
to the surface current density. Therefore, the-fields are
parallel to the plane of the structure above and below it and, at
the metal boundary, the fields cross the plane of the structure
normal to the surface.

The electric and magnetic fields about this planar structure
are shown in Fig. 2(a) for the original structure and in Fig. 2(b)
for the complementary structure. Note that the boundary con-
ditions for the -fields in Fig. 2(a) are similar to the -field
boundary conditions in Fig. 2(b). The same similarity exists
between the -field boundary conditions in Fig. 2(a) and
the negative of the -field boundary conditions in Fig. 2(b).
Therefore, the boundary conditions for the complement of
the original structure are the duals of the original boundary
conditions. It is clear that assuming is the field solution
for Fig. 2(a), (dual of ) not only satisfies Maxwell’s

Fig. 3. Self-complementary two-port structure.

equations, but also satisfies the boundary conditions of the
complementary structure shown in Fig. 2(b). Therefore, due to
the uniqueness theorem, is the field solution for Fig. 2(b).
In other words, the field solutions for the complement of a
structure is equivalent to the field solution for the dual of
that structure.

Deschamps showed that the voltages and currents of the
complementary structure can be defined using the voltages
and currents of the original structure [2]

(2)

(3)

where is the current flowing into terminal and
is the voltage difference between terminalsand of
Fig. 1. Similarly, is the current flowing into terminal of
the complementary structure shown in Fig. 1, and
is the voltage difference between terminalsand of this
structure. By convention, is equal to 1.

III. A N EXTENSION TO DESCHAMPS’ THEOREM

Here, we discuss an extension to Deschamps’ theorem for
a symmetrical three-terminal (two-port) rectangular structure,
bounded with electric and magnetic walls, such as shown
in Fig. 3. Adjacent walls are of opposite type. As will be
discussed later, such a boundary condition might arise from
a periodic array. The symmetry we refer to throughout this
discussion is with respect to a central axis parallel to either
boundary. For this discussion, we will define an even-mode
voltage and an odd-mode voltage in terms of the
voltages and of Fig. 3 as follows:

(4)

(5)

Similarly, and can be expressed in terms of and
as follows:

(6)

(7)

In the following discussion, an odd-mode excitation is
defined as the mode where equal voltages with opposite
polarity appear at ports and of the structure, as shown in
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Fig. 4(a), with . An even-mode excitation is defined
as the mode where equal voltages with the same polarity
appear at ports and of the structure, as shown in
Fig. 4(b), with . We will prove that the ratio of
the impedances of the odd excitation of such a structure to
the corresponding admittances of the even excitation of its
complementary structure is constant and is equal to ,
where is the characteristic impedance of free space.

The results stated above apply to any symmetrical structure
with previously described boundaries and its complement. In
the case of a self-complementary structure, there are additional
simplifications. A self-complementary structure is one which
looks the same when the metal part is exchanged with the
nonmetal part. For a self-complementary structure, the ratio
of the impedances of the odd excitation of the structure to
the admittances of the even excitation of the same structure is
constant and is equal to .

Consider a source configuration at the terminals of the
structure in Fig. 4(a) which results in an odd-mode excitation.
At low frequencies where the structure only supports a single
TEM mode, this odd-mode excitation generates a vertically
polarized electric field ( ) at the far-field. The complement
of this structure is shown in Fig. 4(b). As discussed earlier,
boundary conditions for the complement of a planar structure
are the duals of the boundary conditions for the original
structure. To use Deschamps’ theorem for a bounded structure,
the - and -walls of the original structure must be changed
to their duals when complementing the structure. Since the
dual of an -wall is an -wall and vice versa, this is
equivalent to interchanging - and -walls. The field

in Fig. 4(b) has to be the dual of the field
in Fig. 4(a), therefore, the far-field electric field for the

new structure is horizontally polarized ( ) and the excitation
generating it is an even-mode excitation, as shown in Fig. 4(b).

Bounding a planar structure with electric and magnetic walls
is equivalent to analyzing this structure inside a waveguide
with the same - and -walls [3]. Fig. 5(a) and (b) shows
the waveguide representation of the structures in Fig. 4(a) and
(b). We define port 1 of Fig. 5(a) as the series combination
of ports and in Fig. 4(a), and port 1 in Fig. 5(b) as
the parallel combination of ports and in Fig. 4(b). Two
hollow dots in Fig. 5(a) and two ovals in Fig. 5(b) show port 1.
For the remainder of this discussion, we will refer to port 1
of Fig. 5(a) and (b) as the odd and even-mode device ports.
The waveguides in Fig. 5(a) and (b) extend to both sides of
the structures. However, due to reciprocity and to simplify the
analysis of this three-port structure, these parallel ports are
combined into one port. The new port [port 2 in Fig. 5(a) and
(b)] has half the characteristic impedance of free space. We
will refer to the parallel combination of these two ports as
the waveguide port. The purpose is to find equations relating
the equivalent circuits of the two-port waveguide structures
shown in Fig. 5(a) and (b).

Consider the odd-mode excitation of this symmetrical struc-
ture inside the waveguide, [see Fig. 5(a)]. This odd-mode
excitation at the device port generates a vertically polarized
electric field ( ) at the waveguide port. Assume that this
two-port structure can be represented by a T-equivalent circuit.

(a) (b)

Fig. 4. (a) The odd excitation of a bounded symmetrical structure. (b) Even
excitation of the complement of (a). The ports are marked with black dots.

(a) (b)

Fig. 5. Waveguide representation of Fig. 4. (a) Port 1 is the series combi-
nation of the ports in Fig. 4(a), shown by two hollow dots. (b) Port 1 is the
parallel combination of the ports in Fig. 4(b), shown by two ovals. Port 2 in
(a) and (b) is the parallel combination of the two ports of the waveguide.

The components of this T-circuit are . The
-parameter matrix elements relating the odd-mode excitation

of the device port to the vertically polarized field at the
waveguide port are . The T-circuit
components and the-parameters matrix elements are related,
as shown in Fig. 6(a). This T-equivalent circuit relates the
odd-mode voltage and current ( and ) at the device port
to the waveguide port voltage and current (and ). These
voltages and currents are shown in Fig. 5(a).

Now consider the even-mode excitation of the comple-
ment of the structure in Fig. 5(a) which generates fields with
horizontally polarized -field ( ) at the waveguide port,
as shown in Fig. 5(b). A -equivalent circuit, as shown
in Fig. 6(b), is used to represent the new structure. The
components of this -circuit are . The -
parameter matrix elements relating the even-mode excitation
of the device port to the horizontally polarized field at the
waveguide port are . The -circuit
components and the-parameters matrix elements are related,
as shown in Fig. 6(b). This -circuit relates the device port
even-mode voltage and current ( and ) to the voltage
and current at the waveguide port ( and ), as shown
in Fig. 5(b).



MOUSSESSIANet al.: PROPERTIES OF PERIODIC ARRAYS OF SYMMETIRC COMPLEMENTARY STRUCTURES 1959

(a)

(b)

Fig. 6. (a) The T-equivalent circuit for the odd-mode excitation of the struc-
ture in Fig. 5(a). (b) The�-equivalent circuit for the even-mode excitation of
the structure in Fig. 5(b). Due to reciprocityZo12 = Zo21 andYe12 = Ye21.

Using (2) and (3) for the structures in Fig. 4(a) and (b), we
have

(8)

(9)

where and are the odd-mode current and voltage, as
shown in Fig. 4(a), and and are the even-mode current
and voltage, as shown in Fig. 4(b).

Using (8) and (9),

(10)

Using Fig. 6, the ratio of the device-port impedance for the
odd excitation [see Fig. 6(a)] to the device-port admittance for
the even excitation [see Fig. 6(b)] when the waveguide ports
are terminated to is

(11)

where , , and are the -parameters of the
structure with odd-mode excitation and , , and
are the -parameters of the complementary structure with
even-mode excitation. Terminating the waveguide port to

is equivalent to terminating the two ports of the
waveguide in Fig. 5(a) or (b) to the characteristic impedance
of free space.

Now consider shorting the device port in Fig. 5(a). In order
for Fig. 5(b) to remain the complement of Fig. 5(a), the device
port in Fig. 5(b) has to be an open. Fields at the waveguide
port of Fig. 5(a) are related to the waveguide port fields of
Fig. 5(b) by . We can derive

(12)

where and are the line integrals of and between
the -walls and and are twice the line integral of the

and between the -walls.
The same approach can be used when the device port

in Fig. 5(b) is shorted. In this case, the device port in the
complementary structure [see Fig. 5(a)] has to be an open
circuit. Similarly, we can derive

(13)

From the circuits in Fig. 6, we can also derive

(14)

(15)

From (13) and (14),

(16)

Solving for (10)–(12), (15), and (16), we can derive

(17)

(18)

To summarize, (16)–(18) simply indicate that for the ports
shown in Fig. 6, the -parameters for the odd-mode excitation
are related to the -parameters of the complementary structure
with even-mode excitation by

(19)

Using (19) and Fig. 6, the impedances of the T-equivalent
circuit components ( , , ) for the odd-mode exci-
tation and the admittances of the-circuit components ( ,

, ) for the even-mode excitation of the complementary
structure are also related by

(20)

IV. I MPLICATIONS FOR SELF-COMPLEMENTARY STRUCTURES

This section discusses planar bounded structures that, in
addition to satisfying the boundary and symmetry conditions
previously described, also are self-complementary. For these
self-complementary structures, such as illustrated in Fig. 4,
exchanging the metal and open parts of the structure yields
an identical (mirror image) structure. Since the structure is
identical to its own complement, the results embodied by (19)
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and (20) have some special implications for these bounded
symmetrical self-complementary structures.

For a symmetrical self-complementary structure, the odd-
mode -parameters are related to the even-mode-parameters
of the same structure by (19). Similarly, the T-circuit imped-
ances of the odd-mode are related to the-circuit admittances
of the even-mode of the same structure by (20). This is useful
in modeling because it means that if one can successfully
characterize either the odd- or even-mode behavior of a
symmetrical self-complementary structure, the characteristics
of the other mode can immediately be derived. This property
can also be used to verify the consistency of even- and odd-
mode simulations.

Deschamps showed that for two-port symmetrical self-
complementary unbounded structures, the components of an
impedance matrix representing the relationship between the
currents and voltages at the two ports exhibit certain properties
[5]. The derivation of these properties depends solely on
the duality transformation of the field for the complemented
structure, which results in (2) and (3). These equations are
identical for unbounded and bounded structures. Therefore,
Deschamps’ results apply to the bounded symmetrical self-
complementary structures discussed here. Specifically, for the
matrix defined by

(21)

where and are the port voltages
and currents, defined in Fig. 3, Deschamps showed that

(22)

is the impedance matrix of an ideal attenuator having a
characteristic impedance of . This implies that for the
bounded symmetrical self-complementary two-port structures
discussed here, terminating one of the antenna ports in
will result in an impedance of appearing at the other
port. If an active device that is internally matched to
at both its input and output is connected to the two ports, both
its input and output will be matched to the antenna. This will
be truly independent of the details of the antenna structure
beyond the symmetry and self-complementary restrictions.

V. SELF-COMPLEMENTARY GRID AMPLIFIERS

This section discusses the modeling and design of grid
amplifiers with self-complementary horizontally symmetrical
unit cells. Consider the self-complementary grid-amplifier
configuration shown in Fig. 7. Since the dual of a dielectric is
a magnetic material which does not exist in nature, to make
the active grid a self-complementary structure, we assume that
the grid is suspended in free space. In practice, this is achieved
by constructing the grid on a very thin substrate with a low
dielectric constant. The input and output polarizers are metallic
gratings built on dielectric substrates. The input polarizer metal
strips are from the vertical. To keep the input and output
signals orthogonal, the output polarizer strips are positioned at
an angle of from the vertical. Unlike the previous

Fig. 7. Perspective view of a self-complementary grid amplifier.

grid amplifiers [1], [2], this design allows the use of single
transistors in each unit cell. The input signal that is incident
from the left enters the tilted input polarizer normal to its strips
(see Fig. 7) and generates RF currents on the input gate leads
of the grid. Fig. 8 shows the unit cell and the entire 44 grid
amplifier. Currents on the output drain leads generate an output
signal that passes through the output polarizer. Similar to the
conventional grid amplifiers, the polarizers provide tuning of
the amplifier’s input and output circuits.

The solution for a self-complementary grid amplifier can
be divided into solving for the odd- and even-mode exci-
tations. For each excitation, the current distribution on the
grid allows us to define boundary conditions, as shown in
Fig. 4(a) and (b). Computer-aided design (CAD) analysis of
the unit cell is simpler for the odd-mode excitation. To simulate
equivalent-waveguide structures, shown in Fig. 5(a) and (b),
it is necessary to excite the internal port 1 shown in these
figures. Due to the symmetry of the unit cell, this port can be
excited by simulating half of the unit cell and connecting a
small piece of a coaxial transmission line to this port. Fig. 9
shows this approach for the odd-mode excitation of the unit
cell. This technique is not applicable to the even excitation of
the cell because, for the even mode, the waveguide wall at
the device port is a magnetic wall and there is no convenient
way of inserting a coaxial transmission line at this wall. The
three-port waveguide structure, shown in Fig. 9, is used for
modeling. Ports 2 and 3 are the front and backside of the grid,
and port 1 is the internal port on the grid unit cell where the
transistor will be attached. The electric and magnetic walls of
the waveguide are shown in this figure. The outer walls of
the coaxial transmission line are all electric walls. The coaxial
transmission line is deembedded from the final-parameters.

The approach presented here is to analyze the odd-mode
excitation of this horizontally symmetrical self-complementary
unit cell using Hewlett-Packard’s High Frequency Structure
Simulator (HFSS).1 Due to reciprocity, the 3 3 scattering
matrix resulting from the HFSS simulation can be reduced to
a 2 2 matrix. The port impedance of the combined ports
(ports 2 and 3) is half the impedance of these ports alone.

1HP 85180A High-Frequency Structure Simulator, Hewlett-Packard Com-
pany, Networks Measurements Division, Santa Rosa, CA.
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(a)

(b)

Fig. 8. (a) Front and backside of the grid amplifier unit cell. (b) Front view
of a 4� 4 grid amplifier. The drains are biased from the back side. The drain
diamonds are behind the source diamonds.

Fig. 9. Layout of the HFSS half-cell used in simulating the odd-mode
excitation of the grid unit cell. The coaxial stub used to get access to the
internal port of the grid is deembedded from the finalS-parameter file.

The -parameters of this structure can be calculated from
the -parameters derived from the HFSS simulation. These

-parameters are used to calculate the impedances of the
components in the T-equivalent circuit, as shown in Fig. 6(a).

Fig. 10. The equivalent-circuit model of the grid in Fig. 7 at 10 GHz.

Note that the full-cell T-circuit has impedances twice that of
the half-cell equivalent circuit. The admittances of the full-cell

-equivalent circuit, shown in Fig. 6(b), are derived using (20)
and the impedances of the T-circuit. By combining the odd-
and even-mode equivalent circuits, the model for the entire
cell can be derived.

The grid shown in Fig. 7 is built on a 10-mil-thick Rogers
Duroid substrate with a relative dielectric constant of 2.2. The
unit cell, shown in Fig. 8(a), is 8 mm on a side. The input beam
is coupled to the gate of the transistor through the gate lead
and the output is radiated from the drain lead, orthogonal to
the input. In order to provide bias to the transistors, a double-
sided design is used. The source leads in each column are
connected to each other and biased from the front of the grid.
A wire bond connects each drain lead to a via-hole that is
connected to the backside of the grid. The drain bias leads
in one column are connected to each other and biased at the
backside of the grid. Each gate is shorted to the source through
a bond wire. The inductance of the gate and drain bond wires
are important in the design of the grid and will be discussed
later. To dc isolate the gate of one cell from the drain of the
cell below, a 0.15-mm slot is used to separate the two. Three
20-pF chip capacitors, shown in Fig. 8(a), are used to make an
RF connection between the gate and drain of neighboring cells.
The transistors are Fujitsu FLK012XP MESFET’s. Fig. 8(b)
shows how the unit cells are connected to construct a 44
grid and does not include the details of each cell. Each arrow in
this figure points to the location of the transistor in a unit cell.
The transistors are glued on the source lead, and connections
to the gate, drain, and source are made with wire bonds.

Fig. 10 shows the transmission-line equivalent circuit for
the amplifier configuration of Fig. 7 and unit cell of Fig. 8(a).
The dimensions of , , , and correspond to those used for
designing the prototype amplifier. Free space for this square
unit cell is represented by a resistor with a characteristic
impedance of . The dielectric substrates and air
gaps between them are modeled as transmission lines [2].
Polarizers are modeled as inductors or capacitors depending
on the polarization. To model the transistor, the-parameters
of the FET are normalized to 377. A rotation transformation
matrix is defined to separate the incoming signal to its vertical
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and horizontal components, and also to combine the vertical
and horizontal components of the outgoing signal to form the
output. The four ports of this rotation matrix are the vertical
and horizontal polarizations for ports 1 and 2, and the input
and output signals to the grid amplifier for ports 3 and 4. The

-matrix is defined by

(23)

where is the output-signal angle from the vertical, as shown
is Fig. 7.

The vertical component of the input signal is connected
to the waveguide port of the T-equivalent circuit of the unit
cell, and the horizontal component of the input excites the
waveguide port of the -equivalent circuit. The even- and
odd-mode device ports are then related to the physical device
ports, shown in Fig. 3, using the mode converterdescribed
below.

Define ports 1 and 2 corresponding to voltages 1 and 2 in
Fig. 3, and define port 3 as the odd-mode device port [port 1
in Fig. 5(a)], and port 4 as the even-mode device port [port 1
in Fig. 5(b)]. Equations (4)–(7) that relate , , , can
then be expressed in terms of a mode-conversion matrix

(24)

The dashed rectangle in Fig. 10 is the passive metal struc-
ture of the amplifier unit cell discounting the bond wires shown
in Fig. 8(a). The input signal enters port 3and the output exits
from 4 . Port 2 is connected to the gate of the transistor and
the drain is attached to 1. For the amplifier to work properly,
the transmission coefficients from the input to the gate
and the drain to the output have to be large, and the
transmission coefficients from the input to the drain
and gate to the output have to be small. Resistive loads
of at the device ports 1and 2 are found to be the
optimum loads for accomplishing this, as shown in Section IV.
Therefore, bond wires at the gate and the drain of the FET are
used to resonate with the input and output capacitance of the
FET and present a resistive load at ports 1and 2 of the unit
cell. The measured inductance of a bond wire with a diameter
of 0.7 mil is 1 nH/mm. The required inductance of 1.3 and 0.6
nH is achieved by adding 1.3- and 0.6-mm bond wires at the
drain and gate of the unit cell, respectively. Different angles
for the incoming signal were also considered. An input beam
with an angle of 45 from the vertical is the optimum. The
theoretical predicted gain for the circuit in Fig. 10 is 14 dB
at 8 GHz.

VI. GAIN MEASUREMENT

The small-signal gain of this grid was measured by placing
the grid in the far field of two cross-polarized horns [1], [2].
The amplifier did not show significant gain with the polarizers
positioned as shown in Fig. 10. We suspect that the reason

Fig. 11. Gain response of the amplifier grid. The theory is for the grid
assembly of Fig. 10. For the measured gain, the output polarizer is 1–2 mm
away from the grid and the input polarizer is at a distance of 2.8 cm from
the grid instead ofc = 1:2 cm andb = 1:5 cm in Fig. 10. Also, tuning slabs
are used in the measurement.

might be in part due to the use of a simpler structure in
HFSS modeling of the unit cell. A unit cell similar to Fig. 9
was used because HFSS was unable to simulate the more
complicated unit cell of Fig. 8(a). However, with the output
polarizer 1–2 mm away from the grid (instead of cm in
Fig. 10) and the input polarizer 2.8 cm from the grid (instead
of cm in Fig. 10), we measured the gain curve shown
in Fig. 11. In addition, for this measurement, tuning slabs with
a relative dielectric constant of 2.2 were used at the input and
output. The input tuning slab is 1 cm away from the input
polarizer and the output tuning slab is 1.8 cm away from the
output polarizer. This gain is measured for a drain voltage of
1.85 V and a total drain current of 850 mA. The measured
peak gain is 10 dB at 8 GHz and the 3-dB bandwidth is 210
MHz. The gain of the amplifier when it is not biased is also
shown in Fig. 11. At peak gain, the difference between the
biased and unbiased gain is over 20 dB. To insure that the grid
is stable at this bias, the output power was measured versus
the input power. A linear dependence between the input and
output power indicates that the grid is stable.

As described earlier, tuning for maximum gain, shown in
Fig. 11, requires that the output polarizer be placed very close
to the grid amplifier. This does not satisfy the assumptions
inherent in the simple transmission-line model, shown in
Fig. 10, which only considers the propagating TEM mode
[6]. Therefore, a theoretical gain curve for our measurement
using a transmission-line equivalent model is not possible.
However, for comparison purposes, Fig. 11 also shows the
theoretical curve of the grid assembly, shown in Fig. 10. With
the newer versions of HFSS and the increased computing
power available, we hope to have better results in the future
by simulating the unit cell with all its details [see Fig. 8(a)]
instead of the simplified version of the cell (see Fig. 9).
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The grid suffered from intermittent oscillations at higher
drain voltages. The onset of these oscillations were at a drain
bias voltage above 1.85 V and a bias current above 850 mA.
The oscillation frequency and power were a function of both
bias voltage and time. These oscillations covered a range of
frequencies around 8.5 GHz.

VII. CONCLUSIONS

An extension to Deschamps’ theorem for three-terminal
horizontally symmetrical complementary bounded structures
is presented. This theorem is used to design a self-
complementary grid amplifier. The amplifier has a gain of
10 dB at 8 GHz. The stability of the amplifier is a problem
and is an area of future investigation. It may also be fruitful to
investigate the use of the devices having broad-band internal
matching at both input and output to a real impedance of

since such devices would then have a broad-band
match to the antenna structure.
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